Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 27 Current »

Documentation page: https://vutlan.atlassian.net/wiki/spaces/DEN/pages/1834713171/VT500+Temperature+sensor+v2

Product page: https://vutlan.com/digital-output/14-vt500-temperature-sensor.html

Function and purpose

The sensor is needed for the measurement of temperature indoors.

"VT500 / Temperature sensor" is an analog plug&play temperature sensor for indoor use only. Can be connected to any of the analog ports (A1...A8) of Vutlan monitoring systems.

The accuracy of the sensor is ± 0.15 °C at room temperature.  The maximum distance from the monitoring unit (or sensor extension unit) is 100 meters.

The maximum amount of sensors and maximum length can be extended using the "VT408 / Sensor extension unit".

The sensor can not be used on its own. It must be used together with Vutlan monitoring systems.

Technical specifications

Feature
Description

Type

Analog sensor

Usage

Temperature measurement

Product dimensions

(Length, Width, Height) 60×18×18 mm

Packing weight

70 g

Packing size

(Length, Width, Height) 45x45x120 mm

Cable length

2m (the custom length of the cable is possible)

Power Consumption

60 mW

Operating temperature

Optimal temperature range:  -10° C to +80° C

Extended temperature range:  -40° С to +100° C

Operating humidity

0 to 95 %

Storage temperature

-40° С to +100° C

Storage humidity

0 to 95 %

Mounting possibilities

Desktop, Indoor, Rack-mountable, Wall mount

Max. distance from the unit

100 m

Manufactured in (country)

Manufactured in Slovak Republic, E.U.

HS Code

9025 11 800

Accuracy

± 0.15 °C at room temperature

Daisy chain

Not possible

Inputs terminals

RJ-11 / 6P4C


Package includes

Package content

Description

Quantity

1

Sensor

1 pc

2

RJ11 6P4C 2m telephone cable

1 pcs

3

Screw B4,2 x 16

4

Sticker

Feature

Description

Packaging weight

70g

Packaging size

(Length, Width, Height) 45x45x120 mm

Drawings

Connecting the sensor

The sensor uses a standard Vutlan analog RJS5 RJ11 sensor cable for connecting to the monitoring unit.

Analog sensor connection

This section includes child pages:

Connecting analog sensors

Connect the analog sensor by a supplied RJ-11 (6P4C) cable to any analog port "A1 .. A8" or "Sensor" port. The determination of the sensor type and connection will occur automatically.

Vutlan analog sensor connection (Analog ports).jpg

If strong electromagnetic interference is present, we recommend using a 3-pair cable CAN FTP for sensor connection!

6P4C RJ11 cable wiring/pinouts

RJ11 RJ12 (6p4c) pinouts cable.jpg

1- Yellow, 2- Green, 3- Red, 4 - Black

Colors are true for this telephone cable. Both ends match the colors and pinouts (identical).

Please refer to the RJ connectors comparison table:

Daisy chain connection

Some of the analog sensors can be connected to a daisy chain. Please refer to the article "Chain Connection of analog sensors".

Maximum cable length test

ok = tested

x = failed

Model

50m

100m

120m

150m

200m

VT407

AC current converter

ok

recommended

  ok




VT410

DC voltage monitor

ok





VT420

Converter 4-20mA

ok

recommended

ok




VT500

Temperature sensor

ok

ok




VT501

Outdoor temperature sensor

ok

ok




VT510

Humidity sensor

ok

x




VT530

Access sensor


ok




VT540

Vibration sensor


ok




VT550

Wind velocity meter

ok

x




VT560

Smoke detector


ok




VT570

PIR sensor


ok




VT590

Spot water detector


ok




VT591

Water leak sensor


ok




Extending the number of analog sensors

Using CAN extension "VT408 / Sensor extension unit" it is possible to increase the number of analog sensors connected to the monitoring unit up to 80 sensors.

Analog sensors using CAN bus (Vutlan).jpg

Additional articles of interest

Sensor configuration

Adding logic schemes

Installation using a sticker and a bracket

Option 1.

There's a round bump at the bottom of the plastic enclosure of the sensor. It is used for fastening when the sensor is mounted on walls using a screw. In the current example, it is not needed. If you are planning to mount a device differently, do not follow this step.

Cut the round bump using a knife so that the bottom of the plastic enclosure will be flat.

Option 2.

a) Stick the mounting sensor to the surface using the sticker.

or

b) Stick a sensor to the surface using a screw.

Option 3.

Mount the sensor to the surface using a mounting bracket. The mounting bracket and the sensor can be either attached by the stickers or together with screws and nuts.

Sensor configuration

Settings tab

To configure a sensor, go to "Main menu" >> "System tree" and click on the sensor element in the tree. A modal window with sensor properties will pop up. Change the needed settings and click "OK" or "Apply" at the bottom of the "Properties" window.

All sensors include:

1

Name

The name is given by the system automatically. You can change it to anything you want.

3

ID

System ID of the element.

4

Type

Examples: temperature, humidity, vibration.

5

Class

Examples: analog, CAN, switch, discrete.

6

Hardware port

The external port number on the device panel to which the sensor is connected (if the sensor is external).

All sensors have threshold controls:

In the picture above, the "Current value" equals 41.0 and is represented by the small triangle. Currently, the triangle is green because it is situated in the "Normal" range. Hence the sensor says that the "Current state" is "Normal". This value is used by the system's "Logic schemes" menu to notify the administrator or take action.

Hysteresis

Sensors have the option of setting the hysteresis state. Hysteresis can be a time, a value or it can be disabled.

If the hysteresis is set in time, the sensor will transmit to a new state with a delay of the specified number of seconds in the corresponding field. The time counting will begin from the moment when the measured value of the sensor has left the current range.
Each state has its own field. Which determines the time that the sensor value must continuously hold for the state to change to the specified.

If you set the hysteresis by value, the sensor transition to a new state will occur when the measured value of the sensor exits beyond the current range, adjusted for the specified hysteresis value.

You can calibrate the sensors. Use K and B coefficients. After the calibration, please, save the values in flash memory.

To save sensor properties in the device's flash memory press "  "  then "OK" to confirm. 

Example: Why do we need to use Hysteresis

Let’s say that we have a temperature sensor. Let’s say that we have set up threshold values.

We have set the value 25.5 °C to be a threshold value between Normal/Alarm states.

If the temperature drops just below 25.5 °C You will have a “Normal” state.

If the temperature goes just above 25.5 °C You will have a “Warning” state.

Sometimes the temperature may stay at 25.5 °C and jump up and down by 0.1-0.3 °C. In this case, You will get too many notifications that the sensor is showing a Warning or Normal state.

In this case, we need to use a Hysteresis.

If the type “time” is chosen, the system will wait for a specified time before the State of the sensor is declared.

If type “value” is used, unless the temperature drops by a larger amount than specified, the sensor state will not be declared.

Tuning the sensor value

Sensor readings can be tunned by a linear formula "y = k * x - b"

Example VT407 + HAT-100Q1 / AC current converter:

Metered current for HAT: from 0 to 100A (This means that the range equals 100, k = 100)

The output of VT407 is 0-5V (That means that the range is equal to 5)

"b" = the value that the sensor shows in WebUI when there's no current. Let's say that b = + 0.021

You should use the following formula for HAT: 100/5*(x-y)

The expression formula would be 20*(x-0.021)

Point is used as a decimal separator (3.14)

Charts tab

The charts tab shows the following:

Display chart for

  • last 100 seconds

  • last 100 minutes

  • last 100 hours

  • last 100 days


Refresh data

Start

Poll a sensor

Reset all charts

Reset all

Clears all saved data for the sensor.

Export data

XML or CSV

Exporting data through WebUI does not work for more than a couple of days and is very rough. If you need detailed log data, use the logging of sensor values to the media.
Read more at: System Log, Sensors dump files.

Note: Make sure no endpoint security services used in the network are not blocking the download of XML and CSV files.

Reset smoke sensors

If analog sensors like VT560 / Smoke detector/ sensor detects smoke or fire, it will go into Alarm mode. Alarm mode can only be switched off manually using the Reset smoke detectors panel or using the onboard sensor Analog sensor power reset is found in the System tree >> Onboard.



Copyright:

Vutlan s.r.o. (LLC)

Remote Infrastructure Monitoring and Control

43 ul.Svornosti, 821 06 Bratislava,

Slovak Republic

www.vutlan.com

  • No labels